
FemtoCOF: A FemtoCloud Offloading Framework
With a Machine-Dependent Optimizer

Laila Elbeheiry Mayssa Zaki
Advisors: Khaled Harras, Giselle Reis

• The Internet of Things industry is rapidly
expanding; 79.4 zettabytes (1 followed
by 21 zeros) of data are due to arrive by
2025. [1]

• IoT devices cannot process this amount
and must offload to the Cloud/Fog/Edge.

• Mobile devices are expanding in
numbers and capacity.

• Mobile/IoT devices should be considered
as offload candidates for the more
constrained IoT devices to enhance
performance, utilization and privacy.

I. INTRODUCTION
A) Motivation C) Background

• FemtoClouds: systems that leverage the
available compute capacity of a group of
heterogeneous mobile and IoT devices
to offer computing services. [2]

• Task Originators: Clients that need to
offload computation

• Controller: The device that manages the
FemtoCloud

• Workers: The IoT/mobile devices to
which tasks are offloaded

• Offloading Technique: Mechanism by
which code is offloaded to the
Controller

References

[1] Vega M. (2020). Internet of Things Statistics, Facts & Predictions. in Review 42.
[2] H. K. Gedawy, K. Habak, K. Harras, and M. Hamdi. Ramos: A resource-aware multi-objective system for edge computing. IEEE Transactions on Mobile Computing
[3] https://polly.llvm.org/

B) Our Vision

● FemtoClouds have distinguishing characteristics:
○ Heterogeneous: Huge variety in hardware architectures of Workers
○ Footprint-Sensitive: Offloaded task can’t hinder the functionality of the

Worker from the owner’s perspective
○ Dynamic: Workers enter and exit the system at a high rate

● This leads to the following requirements on the offloading technique:
○ Multi-Architecture Support: Automatically run unmodified code on any

hardware or Instruction Set Architecture
○ Lightweightness: Incur small footprint on resources
○ Maximize Utilization: Do not waste any compute cycles (to minimize

footprint)
● Existing FemtoClouds and similar infrastructures do not provide an offloading

technique that meets these requirements

II. PROBLEM III. SYSTEM ARCHITECTURE

Phase 1 - Worker Registration:
Each Worker sends its specs (architecture name, number of cache levels, each
cache level parameters, number of cpus, floating-point units) to the Controller
Phase 2 - App Registration:
Task Originator sends app code to the Controller
Optimizer cross-compiles and optimizes the code for each target
Optimizer stores the binaries in a code database
Phase 3 - Computation:
Task Originator sends a request and data to the Controller
Controller chooses a Worker to send the corresponding precompiled app to
Worker runs the computation and sends back the results

System Flow
IV. OPTIMIZATION

• Main Contribution of FemtoCOF
• Given: target specification
• Leveraged LLVM as a cross-compiler
• Applies Machine-Dependent Optimizations
• (WIP) Outputs machine-specific binaries
• Based on an Optimizer called Polly

A) Optimizer Overview B) LLVM Infrastructure

C) Polly Optimizer

• Embedded inside the LLVM Compiler
• Transforms LLVM IR to a mathematical model

called the Polyhedral model [3]
• Applies optimizations on that model
• Transforms the model back to LLVM IR

D) Contribution: Cache Analyzer

• Given: Polyhedral model extracted by Polly + cache specs of a Worker
• Calculates the number of cache misses incurred by the program as a function

of the loop parameters
• (WIP) Chooses the loop parameters that minimize the number of cache misses
• (WIP) Uses Polly to transform the loop using the calculated parameters

V. NEXT STEPS

1. Integrate the cache analyzer within Polly
2. Transform the code based on cache analysis
3. Piece together Optimizer with other Controller modules to get a full-fledged

offloading framework

Implementation Plan

Evaluation Plan
Benchmark Examples:

• Matrix Multiplication
• Matrix Transpose and Vector

Multiplication
• Gaussian Filter
• LU decomposition
• 2-D Image processing

Metrics:
• Running Time (s) -> Performance
• Cache Miss Rate (%) -> Utilization
• Disk Usage (Kb) -> Lightweightness
Workers:

• Raspberry Pi 3, Intel Edison, PC

VI. CONCLUSION

● Designed FemtoCOF: an offloading framework designed from the ground up with
FemtoCloud attributes in mind

● Implemented a cache analyzer based on the Polyhedral model
● (WIP) Integrated the cache analyzer with Polly to tailor Polly’s code

transformations for a target hardware specification
● Leveraged state-of-the-art tools like LLVM and Polly

