SMLtoCoq: Automated Generation of Coq Specifications and Proof
Obligations from SML Programs with Contracts

Ammar Karkour and Laila Elbeheiry
Advisor: Giselle Reis

NTRODUCTIO
Motivation Problem Contribution Highlights
* We’re becoming dependent on software that ¢ Programming languages are built for programming; ¢ SMLtoCoq: a tool that automatically translates SML
malicious software can compromise our safety and they aim to facilitate writing code programs without side-effects including partial
health. ¢ Proof assistants are built for reasoning; they aim to functions, structures, functors, and records into Coq
* Testing and non-mathematical techniques are not make facilitate writing proofs specifications
reliable methods to ensure software safety. ¢ To prove properties about an implemented ¢ An extension to the SML language with function
* Formal verification is a rigorous mathematical program, it is necessary to “reimplement” it in the contracts which are directly translated into Coq
technique to formally prove code correctness. language of a proof assistant theorems

« Formal verification can ensure the absence of bugs ¢ This requires familiarity with both the programming * ACoqversion of many parts of SML’s basis library
in software language and the proof assistant making it A case study where we translate non-trivial SML

» A common approach to formal verification is using inconvenient for programmers code and prove properties on the Coq output
tools known as theorem-provers to write theorems
and prove them on a computer

1. INFRASTRUCTURE 11l. TRANSLATION

A) Overview Translating from an SML’s AST S into a Gallina’s AST Gis defined inductively on S.
SMLtoCoq implements a translation of SML’s abstract syntax tree (AST) into The fragment of SML being translated Functions
Gallina’s (Coq’s specification language) AST - which is subsequently used to Functions inside
(Coas s guage) q Y Reference Cells let blocks * Unless a function is total and

generate Gallina code

structurally decreasing at every

Overloaded Operat : A ;
Functions o oaded Operators recursive call, its translation to
~SML Code- HaMLeT SML AST- SMLtoCoq Convertor Gallina AST: SMLtoCoq Generator Coq Code—> N .). P
Non-Exhaustive Matches Coq isn’t trivial
R * We use the Equations plugin
Record f f
B) HaMLet ecores which provides a powerful tool

Structures

eclaten for defining terminating functions

via pattern-matching on
dependent types

¢ Animplementation of SML with a front-end compiler Functors
¢ Comprises of three phases:
o Parsing: Returns the AST of an SML program (if syntax is correct) Variable Shadowing
o Elaboration: Populates the AST with well-formedness conditions (e.g. * Our translation includes pattern
non-exhaustive or redundant matches) and type-checking information matching on inputs, mutually
o Evaluation: evaluates the program to a value recursive functions, and partial
¢ We use the AST after the elaboration phase, when annotations contain useful Contracts functions
information such as inferred types and exhaustiveness of matches that are

crucial for the generated Coq code

Signatures
Exceptions

Polymorphic
Types

¢ We add function contracts to HaMLet
¢ SML contracts get translated to Coq Theorems as follows:

C) Coq/Gallina (! f dnput ==> output; Theorem f_Theorem: forall vars,
Lo , . . . REQUIRES: precond; |:> (f dinput = output /\ precond =
¢ Gallinais Coq’s core language for writing specifications. ENSURES: postcond; !!) true) -> postcond = true.

e Gallina’s AST is implemented it as a datatype in our system
¢ Some constructors were added/eliminated to the datatype to match SML’s AST

IV. EXAMPLES

SML Program Coq Translation SML Program Coq Translation

Inductive treeS : =
datatype treeS = emptyS | -l Module KEY.
| leafS of string | i::f;’ : SRR S0 trees signature KEY = Parameter t :
| nodeS of treeS * treeS | e « i ik Sy % t 6 & sig Parameter compare : ((t % t) % type — comparison).
nodeS : (tree! ree ype ree e ¢ End KEY.
f i d tyS: t S): stri list = nil val compare : t * t -> order
o ?nor er: (empty iee % seoldells e Equations inorder (x1: treeS): @ list string
| inorder (leafS x) = [x] rordir entyS s Tils end Module DICT.
| inorder (nodeS (tL, tR)) = A (123?5)'() 2 EX]' Parameter key : 3
(inorder tL) @ (inorder tR) inorder (nodes (tL._tR))’-— signature DICT = Definition entry {_a : } := (key * _a) % type.
S are @') d ® sig Parameter dict : (-
fun normal' (emptyS: treeS): bool = false CCLOFdEr=t:2):5 ICLRORUSE 14R)): type key Parameter empty : (forall {_a : }, (e dict _a)).
| normal' (leafS _) = true type 'a entry = key x 'a Parameter lookup : (forall {_a : Y,
Equations normal' (x1: treeS): bool := , § .
| normal' (nodeS (tL, tR)) = AerHALY Sites e) type 'a dict ((key * (@ dict _a)) % type — (@ _a)).
normal ' tL andalso normal' tR i (lp 15 ; e Parameter insert : (forall {_a : } s
norma sabyi=) 4= J val empty: 'a dict (((@ entry _a) x (@ dict _a)) % type — (@ dict _a))).
normal’ (nodeS (tL, tR)) := . ,
fun normal (emptyS: treeS): bool = true ‘ 1 tl) & (1 tR) val lookup: key * 'a dict -> 'a option End DICT.
| normal t = normal' t noria) flonma 2 val insert: 'a entry x 'a dict -> 'a dict
end Module IntKey : KEY with Definition t := Z.
p . Equations normal (x1: treeS): bool :=
(* normalize t --> t 1 &S Definition t := Z.
normal e = s
Satifies Ly structure IntKey :> KEY where type t=int = Definition compare := Int.compare.
" normal t := (normal' t).
- inorder t == inorder (normalize t) struct End IntKey.
- normal t' == true type t = int
Equations normalize (x1: treeS): treeS := P
x) . h val compare = Int.compare
" normalize emptyS := emptyS;
fun normalize (emptyS: treeS): treeS = emptyS | end
3 normalize (leafS x) := (leafS x);
| normalize (leafS x) = leafS x nofalize Caodes Ty TRYY wm ¢ e SRR SEEERREEEEE e SEEREEETEEERTE
| normalize (nodeS (tL, tR)) = g 4 A7 Yyne e = § naney ; ssbeing Record rid { rid,_name : string; rid,_age : Z }.
. - match ((normalize tL), (normalize tR) : # 2 Definition r := rid,.
(case (normalize tL, normalize tR) | (emptyS, tR') = tR’ N age : int };
of (emptyS, tR') => tR’ | (tL', emptySy = tL' : Equations isBob (x1: ridi): bool =
| (tL', emptyS) => tL' co , ; ‘fun isBob ({name = "Bob", ...}: r) = true | X . e ot e poien -
| Ml mmoliss THLE , RIS | (tL', tR') = (nodeS (tL', tR')) | GORE tr) SO isBob {| rid;_age ridy_name := "Bob" |} := ;
’ - ' ' end). . i ’ isBob {| ridy_age := _; ridi_name := _ |} :=
¢ Extend SMLtoCoq with: Functions inside let blocks, Non-trivial recursion (without * Prove the correctness of the translation from SML to Gallina

the need for termination proofs), Side-effects ¢ Simplify automatically generated preconditions

Carnegie Mellon University Qatar

MEETING e SMLtoCoq’s source code can be found at:

Minds

Undergraduate
Research Symposium

https://github.com/meta-logic/sml-to-coq/

