
Translating from an SML’s AST 𝓢 into a Gallina’s AST 𝓖 is defined inductively on 𝓢.
The fragment of SML being translatedSMLtoCoq implements a translation of SML’s abstract syntax tree (AST) into

Gallina’s (Coq’s specification language) AST – which is subsequently used to
generate Gallina code

• Gallina is Coq’s core language for writing specifications.
• Gallina’s AST is implemented it as a datatype in our system
• Some constructors were added/eliminated to the datatype to match SML’s AST

• An implementation of SML with a front-end compiler
• Comprises of three phases:

○ Parsing: Returns the AST of an SML program (if syntax is correct)
○ Elaboration: Populates the AST with well-formedness conditions (e.g.

non-exhaustive or redundant matches) and type-checking information
○ Evaluation: evaluates the program to a value

• We use the AST after the elaboration phase, when annotations contain useful
information such as inferred types and exhaustiveness of matches that are
crucial for the generated Coq code

• Programming languages are built for programming;
they aim to facilitate writing code

• Proof assistants are built for reasoning; they aim to
make facilitate writing proofs

• To prove properties about an implemented
program, it is necessary to “reimplement” it in the
language of a proof assistant

• This requires familiarity with both the programming
language and the proof assistant making it
inconvenient for programmers

SMLtoCoq: Automated Generation of Coq Specifications and Proof
Obligations from SML Programs with Contracts

Ammar Karkour and Laila Elbeheiry
Advisor: Giselle Reis

• We’re becoming dependent on software that
malicious software can compromise our safety and
health.

• Testing and non-mathematical techniques are not
reliable methods to ensure software safety.

• Formal verification is a rigorous mathematical
technique to formally prove code correctness.

• Formal verification can ensure the absence of bugs
in software

• A common approach to formal verification is using
tools known as theorem-provers to write theorems
and prove them on a computer

I. INTRODUCTION
Motivation

References

II. INFRASTRUCTURE III. TRANSLATION

V. FUTURE WORK

Problem Contribution Highlights
• SMLtoCoq: a tool that automatically translates SML

programs without side-effects including partial
functions, structures, functors, and records into Coq
specifications

• An extension to the SML language with function
contracts which are directly translated into Coq
theorems

• A Coq version of many parts of SML’s basis library
• A case study where we translate non-trivial SML

code and prove properties on the Coq output

B) HaMLet

A) Overview

C) Coq/Gallina

Non-Exhaustive Matches

Exceptions
Polymorphic

Types

Signatures

Contracts

Functors

Functions inside
let blocksReference Cells

Variable Shadowing

Overloaded Operators
Functions

Structures

Infix Functions

Typed Patterns

Records

Functions

Contracts

• Unless a function is total and
structurally decreasing at every
recursive call, its translation to
Coq isn’t trivial

• We use the Equations plugin
which provides a powerful tool
for defining terminating functions
via pattern-matching on
dependent types

• Our translation includes pattern
matching on inputs, mutually
recursive functions, and partial
functions

• We add function contracts to HaMLet
• SML contracts get translated to Coq Theorems as follows:
(!! f input ==> output;
 REQUIRES: precond;
 ENSURES: postcond; !!)

Theorem f_Theorem: forall vars,
(f input = output /\ precond =
true) -> postcond = true.

Coq TranslationSML Program Coq TranslationSML Program

• Extend SMLtoCoq with: Functions inside let blocks, Non-trivial recursion (without
the need for termination proofs), Side-effects

• Prove the correctness of the translation from SML to Gallina
• Simplify automatically generated preconditions

SMLtoCoq’s source code can be found at: https://github.com/meta-logic/sml-to-coq/

IV. EXAMPLES

https://github.com/meta-logic/sml-to-coq/

